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SUMMARY

Results are presented of a wind-tunnel investigation of the longi-

tudinal stability, control, and performance characteristics of a model

of a four-propeller deflected-slipstream VTOL airplane in the transition

speed range. These results indicate that steady level-flight transition

and descending flight-path angles up to 7° or 8° out of the region of

ground effect can be accomplished without wing stall being encountered.

In general, the pitching moments out of ground proximity cau be adequately

trimmed by programing the stabilizer incidence to increase with increasing

flap deflection, except for a relatively large diving moment in the hov-

ering condition. The deflection of the slipstream onto the horizontal

tail in proximity of the ground substantially increases the diving moment

in hovering, unless the tail is set at a large nosedown incidence.

INTRODUCTION

A wind-tunnel investigation has been made of a i/5-scale model of a

current deflected-slipstream VTOL (vertical take-off and landing) airplane

to determine the performance and the stability and control characteristics

in hovering and in transition to forward flight. The investigation in

the transition speed range was made in the 17-fqot test section of the

Langley 300-MPH 7- by 10-foot tunnel and the hovering investigation was

made in a large room.

The investigation covered the complete range of flap deflections

and power conditions through the transition speed range from hovering

to forward (flaps retracted) flight. The present paper presents the

results of the investigation of the longitudinal stability, control, and

performance characteristics, including tests in the ground-effect region.

An analysis of some of the significant longitudinal stability, control,

and performance characteristics is included.



SYMBOLS

The force and momentcoefficients presented are based on the dynamic
pressure in the slipstream. This system is used because, whena wing is
located in a propeller slipstream, large forces and momentscan be pro-
duced even though the free-stream velocity decreases to zero and in this
condition coefficients based on the free-stream dynamic pressure approach
infinity and therefore becomemeaningless. The coefficients based on the
slipstream dynamic pressure are indicated in the present paper by the use
of the subscript s. The relations between the thrust and dynamic pres-
sure in the slipstream have been derived in reference i. The more familiar
coefficient forms based on the free-stream dynamic pressure can be found

CLps The positive sense of
by dividing by (1 - CT,s); that is CL = 1 - CT,s"
forces, moments, and angles is indicated in figure 1. The pitching
momentsare presented with reference to the center of gravity located at
the projection of the wing 40-percent-chord point on the thrust line as
shownin figure 2.

b wing span, 6.55 ft

wing chord, 1.166 ft

c a aileron chord, 0.466 ft

cR rear flap chord, 0.466 ft

cS sliding flap chord, 0.565 ft

ct horlzontal-tail chord, 0.666 ft

Aileron hinge moment
Ch, a aileron hinge-moment coefficient,

qsSaCa

Ch,R rear-flap hinge-moment coefficient,
Rear-flap hinge moment

qsSRCR

Ch,S sliding-flap hinge-moment coefficient,

Sliding-flap hinge moment

qsSsCs

CL lift coefficient based on free stream, L

 v2s
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CL, s

Cm, s

CN, t

CT,s

Cx,s

D

F

F X

h

i t

i n

L

My

Mt

n

N

lift coefficient based on slipstream, L

qs S

model pitching-moment coefficient,

qs Sc

increment of pitching-moment coefficient due to tail fan

horizontal-tail pitching-moment coefficient, Mt

qsStCt

horizontal-tail normal-force coefficient, Tail normal force

qsSt

thrust coefficient,
T

D2
qs N

longitudinal-force coefficient,
Fx

qs S

propeller diameter, 1.55 ft

resultant force, ib

longitudinal force, Ib

height of landing-gear wheels above ground, ft

horizontal-tail incidence, deg

incidence of thrust axis relative to fuselage reference

line, deg

lift, lb

pitching moment, ft-lb

horizontal-tail pitching moment, ft-lb

propeller rotational speed, rpm

number of propellers



qs
dynamic pressure in slipstream, pV 2 + T ib/sq ft

-_- N _-D2'
4

s

Sa

sR

SS

St

T

T t

V

V k

(L

D0.75

5tab

5f,S

5f,R

6

P

8

wing area, 7.65 sq ft

aileron area per semispan, 0.692 sq ft

inboard-rear-flap area per semispan, 0.724 sq ft

sliding flap area per semispan, 1.72 sq ft

horizontal-tail area, 2.47 sq ft

total thrust, ib

tail-fan thrust, ib

free-streamvelocity, ft/sec

free-stream velocity_ knots

angle of attack, deg

propeller blade angle, measured at 75 percent radians, deg

tab deflection, deg

sliding-flap deflection, deg

rear-flap deflection, deg

downwash angle, deg

mass density of air, slugs/cu ft

L

slipstream turning angle (static tests), arc tan _X, deg

flight-path angle, deg

Subscripts:

0 power-off-flaps retracted condition
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S

R

based on slipstream value

sliding flap

rear flap

MODEL

A drawing of the model with pertinent dimensions is presented as
figure 23 and photographs of the model mounted for testing are presented
as figure 3- The wing employed an NACA4415 airfoil section (fig. 4)
and was set at 5° noseup incidence to the fuselage reference line, which
was usually parallel to the propeller thrust axis. The flap system con-
sisted of a 50-percent-chord sliding flap and a 30-percent-chord slotted
flap as shownin figure 4. The radius of the sliding flap was 20 percent
of the wing chord, and the ordinates of the slotted flap are shownon
figure 4. The combinations of flap deflections used in the investiga-
tion and the convention adopted to designate the flap deflections as
used on the figures and throughout the text are as follows:

Sliding-flap deflection,
5f,S, deg

0
i0
2O
3o
40

50
%0

Rear-flap deflection,

8f,R, deg

0

8.2

15

20.7
24

25
a26

Designation:

8f, slSf,R

o/o
loZ8.2
2oll5

30/20.7

40124
50/25

60/26

aUsed in static tests only.

In addition, the rear or slotted flap was constructed in two pieces so

that the outboard element could be deflected as an aileron. A few tests

were made with the inboard element deflected 40 ° and with the sliding

flap and aileron retracted, in order to obtain some data on a conven-

tional partial-span flap configuration. Sketches of a full-span slat

and full-span flap extension used in only a few tests are shown in

figure 4.

The model was equipped with a large vertical tail to which the hor-

izontal tail was attached in a high position (figs. I and 2). A small

adjustable trailing-edge tab was provided on the horizontal tail.
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For a few tests3 the model was fitted with a pneumatically driven

tail fan (figs. i and 2) in order to investigate the effect of the influ-

ence of the slipstream from the tail fan on the model characteristics.

The model construction consisted of a steel frame to carry the loads

and a wooden covering to give the desired contours. The three-bladed

propellers were made of aluminum alloy and were driven by variable-

frequency electric motors. The speed of each propeller was determined

by observing a stroboscopic-type indicator to which was fed the output

frequency of small alternators connected to each of the motor shafts.

The outboard propellers rotated against the tip vortex and for most of

the tests the inboard propellers rotated in the opposite direction. For

a few tests the direction of rotation of the inboard propellers was

reversed so that they rotated in the same direction as their adjacent

outboard propellers. For the basic configuration the thrust axis was

oriented 5° below the wing-chord plane. Alternate nacelle mounting

blocks were used in a few tests to mount the propellers with their thrust

axes parallel to the wing chord plane. The thrust line passed through

the moment reference point for both conditions.

The lift 3 longitudinal force, and pitching moment were measured with

an internally mounted strain-gage balance. In addition the hinge moments

of the aileron, the sliding flap, and the inboard part of the rear flap

weremeasured by strain-gage beams. The moment reference points for

these hinge moments are shown in figure 4. The horizontal-tail normal

force and pitching moment (about the tail quarter-chord point) were also

measured by strain-gage beams.

The flap settings were fixed by interchangeable blocks and the

stabilizer was set at fixed positions by inserting dowels in appropriate

predrilled setting holes.

The landing gear was built with round rods rather than with the

streamline tubing used on the airplane and was installed for all but a few

tests as indicated on the data figures.

TESTS AND CORRECTIONS

The investigation was made in the 17-foot test section of the

Langley 300-MPH 7- by lO-foot tunnel, which is described in the appendix

to reference 2. In order to minimize the time required for the tests,

the operating conditions were chosen so that only two propeller blade

angles were required. A blade angle of 5° was used for tests at thrust

coefficients of 0.60 or more and a blade angle of 13 ° was used for the

lower thrust coefficients and for the propeller-windmilling tests. A

propeller rotational-speed of 6,000 rpm was used with the 5° blade angle
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and of 4,000 with the 13 ° blade angle. The thrust of the four propellers

was determined at each tunnel speed used by taking the difference between

the longitudinal force measured with the propellers operating and with the

propellers off at zero angle of attack with the flaps retracted.

The slipstream dynamic pressure varied from about 3.8 to 5.0 pounds

per square foot. A free-stream dynamic pressure of 5.0 pounds per square

foot was used for the propeller-off and propeller-windmilling tests. The

Reynolds number of the flow in the slipstream based on the wing chord of

1.166 feet varied from 0.42 × 106 to 0.49 × 106 .

The test procedure consisted in setting the propeller rotational

speed with the model at zero angle of attack and then increasing the

tunnel speed until zero longitudinal force was reached. This tunnel

speed, which then corresponded to the condition for steady level flight

at zero angle of attack, was held constant as the data were taken through

the angle-of-attack range. Usually, subsequent tests were also made at

tunnel dynamic pressures above and below the tunnel speed for steady

level flight at zero angle of attack in order to provide data for the

conditions of acceleration and deceleration.

Corrections to the free-stream velocity for blockage and slipstream

contraction were estimated and were considered negligible. The jet-

boundary corrections applied to the angle of attack and longitudinal

force were estimated for a square test section by a method similar to that

of reference 5. Inasmuch as these corrections depend on the circulation

about the wing, it was necessary to subtract the direct thrust contribu-

tion to lift before applying them. The following relations were used:

= _measured + 0"239CL,I

CX, s = Cx, s,measured - 0.0042(CL,I)2(I - CT,s)

where CL, I is the increment of lift coefficient that is approximately

proportional to circulation and is obtained by subtracting the direct

thrust contribution as follows:

CL, I =

4 _-D 2

4 F sin(Q + _)
CL, s - CT, s S T

i - CT, s
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where 0 and F/T are the turning angle and thrust-recovery factor_

respectively_ determined from static tests.

PRESENTATION OF RESULTS

The figures in which results of the investigation are presented are

listed_ for convenience_ in the following table:

Complete model data:
Static data .......................

Effect of flap deflection and thrust coefficient:

Horizontal tail off ..................

Horizontal tail on ..................

Effect of ground proximity .............

Effect of horizontal-tail incidence ...........

Effect of thrust-line incidence and direction of

inboard propeller rotation ............

Effect of tail fan ...................

Effect of tab deflection ................

Effect of leading-edge slat and chord extension .....

Effect of inboard flap .................

Effect of landing gear .................

Figures

5 to 8

9 to 13

14 to 19

20 to 23

24 to 28

29 to 31
32 to 34

35

36 to 38

39 to 40
41

Flap and aileron hinge moments:

Static data .......................

Effect of flap deflection ................

Effect of thrust-line incidence and direction of

propeller rotation ........ ..........

7

9 to 13

29 to 31

Horizontal-tail normal force:

Static data ....................... 6

Effect of thrust coefficient and flap deflection 14 to 17_ 19

Effect of horizontal-tail incidence ........... 24 to 27

Effect of tail fan ................... 32 to 34

Effect of tab deflection ................ 35

Horizontal-tail pitching moments:

Effect of thrust coefficients_ flaps retracted .....

Effect of horizontal-tail incidence ..........

Effect of tail fan ...................

Effect of tab deflection ..............

14

24

32
35
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Analysis:

Steady-level-flight transition:

Performance out of ground proximity ...........

Effect of ground proximity ...............
Trim and control:

Out of ground proximity .................

Effect of ground proximity .............. .

Stability .........................

Climb and descent characteristics:

Effect of flap deflection ................

Effect of horizontal-tail incidence ...........

Effect of ground proximity ...............

Effect of slat .....................

Figures

47 to 49

50

51

52

53

54

55

The basic data obtained from the investigation are presented in fig-
ures 5 to 41. Complete analysis of all the data obtained has not been

attempted; however, a few of the more significant results are analyzed

on the basis of the performance and the stability and control character-

istics that can be predicted from the tunnel data. These results are

presented in figures 42 to 55. A gross weight of 3,600 pounds was assumed

for the purpose of this analysis.

DISCUSSION

Hovering Characteristics

The basic hovering characteristics are presented in figures 5 to 8.

With a flap-deflection combination 5fjS/Sf,R of 50/25, a turning

angle _ of approximately 67 ° and a thrust-recovery factor F/T of

approximately 0.8 was obtained. Thus, for a gross weight of 3,600 pounds_

a thrust of about 4,500 pounds and a noseup attitude of approximately

23 ° (as expected) would be required to hover out of ground effect. It

is emphasized that these results apply only to the configuration having

a ratio of propeller diameter to wing chord of the model as tested. If

the propeller diameter were increased 3 the turning angle would be

expected to decrease in approximately inverse proportion to the increase

in propeller diameter (fig. 2 of ref. 4).

In proximity of the ground, the turning angle decreased slightly

and the thrust recovery factor increased slightly as compared with values

obtained out of ground effect. The most important effect of ground

proximity was to increase the nosedown pitching moment. This increase

was found to be due to the deflection of the slipstream from the ground

onto the horizontal tail. The high noseup attitude (about 26 o) required
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for hovering within ground proximity brings the tail very near the ground
even with the high-tail configuration employed. Thus, a tail incidence
of -26° is required merely to place the horizontal tail parallel with
the ground, and the data of figure 6 indicate that an additional incre-
ment of about ii ° (or a total incidence of -37° ) is required to provide
pitching momentsequal to those obtained out of ground proximity.

Steady-Level-Flight Transition

The effect of thrust coefficient on the basic aerodynamic character-
istics with various flap deflections is shownin figures 9 to 13 for the
tail-off condition and in figures 14 to 19 for the tail-on condition.
From polars of the lift against longitudinal force (part (a) of fig-
ures 9 to 19), it can be seen that in general wing stall is not encoun-
tered in the steady level-flight condition (Cx, s = O) but is delayed
somewhatuntil the configuration is in the descent or deceleration con-
dition _(Cx,s,negative). The one exception to this result is that obtained
with the flaps retracted, where the stall occurs in the climb or acceler-
ation condition; however, this stall occurs at high thrust coefficients
and at angles of attack above 25° and is not believed likely to be
encountered in practice.

The data of figures 9 to 19 have been used to estimate the attitude
and thrust required for steady-level-flight transition as shown in fig-
ure 42. As discussed previously, a thrust of 4,500 pounds and a noseup
attitude of 23° is required for hovering with 8f,S/Sf,R = 50/25. Thrust
decreases rapidly with forward speed and is fairly independent of flap
deflection within the ranges investigated.

The angle of attack, power required, and the flap deflections used
in the analysis of the steady level-flight transition are shownin fig-
ure 43. The transition starts, of course, with hovering at a 23° atti-
tude with flap deflections 8f,_Sf, R of 50/25. The angle of attack
is decreased, and zero angle of attack is reached at about 15 knots,
after which flap deflection is progressively decreased, while angle
of attack is held at 0°. Also shownin figure 43 are the angle of attack
and power required as calculated from power-off data for the flaps
retracted (from fig. 9) and for inboard flaps deflected 40° (from
fig. 39). The power required was calculated from the data of refer-
ence 5 with propeller rotational speed assumedconstant at 2,000 rpm.

It should be noted that, although the thrust required at about
40 knots decreased to a minimumof about 20 percent of that required
for hovering (fig. 42), the power required decreased to only 50 percent
of hovering power. This unexpected result is attributed to the extremely
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low blade angles required for the low thrusts with the wide propeller

blades (activity factor of 165 per blade) used with the model, as is

shown in figure 44, where the blade angle _0.75 and the horsepower

required for level flight is plotted as a function of airspeed. The

effect of decreasing the activity factor is also shown in figure 44.

Of course, with narrower blades, higher efficiencies are available at

these intermediate speeds because blade angles are slightly higher.

The low blade angles required may become a problem in the event

of propeller malfunction or power failure. If the propellers were

arranged to go to their low pitch stops under these conditions, very

high drag would be encountered if failure should occur in the cruise

condition, or large rolling moments would result if an outboard propeller

failed at or near hovering. A possible means of avoiding such low blade

angles and thus minimizing these problems would be to vary the propeller

rotational speeds as a means of achieving power and thrust control during
transition and to hold the blade angle fixed. This method is illustrated

in figure 45 for the propeller blades with an activity factor of 165. A

somewhat smaller variation in propeller rotational speed would be

expected with narrower blades. This system may, however, impose problems

of too slow response in change in propeller rotational speed, to a pilot

command for thrust change 3 which would have to be evaluated before a

constant-blade-angle system could be considered.

The effect of ground proximity h/D on the attitude and power

required in transition is shown in figure 46. The presence of the ground

causes the power required to remain almost as high as the hovering power

up to speeds of about 20 knots. This power requirement is necessary

because of flow separation from the flaps. Similar results have been

observed with another deflected-slipstream configuration (ref. 2) and

suggest that transition should not be attempted very near the ground.

Trim and Control

The untrimmed pitching moments for the airplane in steady-level-

flight transition are shown in figure 47 for tail-off condition and for

the condition with the horizontal tail on and at zero incidence. A

nosedown moment of about 2,400 foot-pounds exists in hovering for the

configuration as tested. This moment would require a down load from the

tail fan of about 120 pounds for trim out of ground proximity. The

effects of this loss in lift on the power required in hovering were not

considered in computing the thrust and power required of figures 42
to 45.

The diving moment in hovering could be reduced by either lowering

the thrust axis or moving the center of gravity of the airplane rearward
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or by a combination of these two. Of course, moving the center of gravity

rearward would reduce the longitudinal stability. There is ample stabil-

ity in the flap-retracted condition (fig. 24) and some reduction could

probably be tolerated for this condition, but in the intermediate range

of flap settings the airplane already exhibits attitude instability with

the present center-of-gravity location.

As the airplane departs from hovering and gains forward speed, the

pitching moment changes to a noseup moment (fig. 47). The large nose-

up moments experienced with the horizontal tall at zero incidence are

due to the large downwash angles. The downwash angles at the horizontal

tall have been estimated from the horlzontal-tall normal-force data of

figures 24 to 27 (part (c)) and are shown in figure 48. The downwash

angle was estimated from

CN,t
E =_+ i t

t

where the variation of horizontal-tail normal-force coefficient with

( ) was estimated from the power-offrespect to angle of attack CN_
t

data of figure 24(c). The downwash at the tail is shown to increase

with increasing flap deflection, and the variation of downwash angle

with angle of attack, in general, increases with increasing thrust

coefficient. Thus, power is destabilizing. At flap deflections

5f,SlSf, R above 30/20.7 (power on), the normal force at the horizontal
l

tail was so small that reliable data could not be obtained.

The method of computing the downwash at the horizontal tail from

the foregoing equation assumes that the dynamic pressure at the hori-

zontal tail is equal to the free-stream dynamic pressure. The tail-

effectiveness data of figure 49 indicate that this assumption is fairly

accurate. In figure 49 the power-on horizontal-tail effectiveness

for several flap deflections is compared with the effectiveness
8it

computed from the power-off, flaps-retracted data obtained by assuming

free-stream dynamic pressure at the tail throughout the transition

speed range. Apparently, the horizontal tall is located high enough

on this configuration so that essentially free-stream dynamic pressure

exists at the horizontal tail throughout the transition out of the ground-

effect region.

Some difficulty was experienced with the strain-gage instrumentation

used in obtaining the tail normal-force data. Comparison of the measured

data with that calculated from the model lift and pitching-moment data

indicates that the angles of attack for zero normal force (zero tail

contribution) are approximately correct but that at other angles of attack

the tall normal-force coefficients are too large. The general trends of

the data and the downwash estimated from them are believed correct, however.

L

7

3

5
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In figure 49 are also plotted the downwash and stabilizer incidence

required for trim through the steady-level-flight transition. Because

of the high downwash angles and the noseup pitching moments (tail-off

data of fig. 47) that must be trimmed by the horizontal tail, relatively

high noseuptail incidences are required for trim. Below about 25 knots

the dynamic pressure at the horizontal tail is so low that the tail

becomes ineffective as a trimming device, and tail settings above 20 °

to 25 ° are probably not needed.

The effect of ground proximity on the pitching moments is shown in

figure 50. Very close to the ground (h/D = 0.33) the deflection of the

slipstream onto the horizontal tail, as discussed previously, causes a

large additional diving moment which persists up to a speed of 20 to

25 knots. Also, as discussed previously_ this diving moment could be

reduced considerably by using a nosedown horizontal-tail incidence of

about -35 °. Note_ however, that at speeds of about 25 knots and above,

large noseup stabilizer settings are required for trim out of the region

of ground effect. Thus, the horizontal tail will have to move through

about a 60 ° angle range if trim is to be maintained in passing from the

region of ground effect to the region out of ground effect.

Other possible means of reducing this diving moment would be by

lowering the thrust axis, moving the center of gravity rearward, pro-

viding ample tail-fan thrust for both trim and control, or a combina-
above

tion of these methods. In addition, increasing 8f,S/Sf,R 50/25

should provide some relief in that, with a larger turning angle resulting,

the tail would not be so close to the ground and thus would partially

be out of the redirected slipstreams. This would require increased

power in hovering to overcome the larger turning losses involved, however.

Stability

The attitude stability _My and speed stability parameters 8My

8_ 8vk
through the transition speed range were estimated from the data in fig-

ures 14 to 19 and are presented in figure 51. The attitude stability

was computed directly from the measured slopes of the pitching-moment

%
coefficient with respect to angle of attack from - °Um's qsSc.

The attitude-stability parameter 0_ that would be obtained if the

(SCm'sl were

power-off flaps-retracted level of stability __\_/0 maintained

throughout the speed range is also presented for comparison. It can be
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seen that below a speed of about 35 knots the configuration exhibits

attitude instability. Experience with other deflected-slipstream con-

figurations (refs. 6 and 7) has shown that some attitude instability is

to be expected and is due partly to the downward shift of the center-of-

propeller thrust with increasing angle of attack as discussed in ref-

erence i and partly to the increased variation of downwash with angle of

attack as shown in figure 48.

The speed-stability parameter (_My was estimated from the variation

8vk

with thrust coefficient at a constant angle of attack (figs. 14
of CM_ s

to 19, parts (b)). Both the propeller blade angle and rotational speed

were also assumed constant. It was necessary, first of all, to determine

the variation of thrust with airspeed from the propeller data of refer-

ence 5. This calculation was made by using the equilibrium speed and

thrust conditions of figures 42 and 43 as basic conditions. From these

data the variation of thrust coefficient and slipstream dynamic pressure

with velocity was readily calculated and from these, the variation of

pitching moment with velocity was calculated.

As would be expected from previous experience (refs. 6 and 7) with

deflected slipstream configurations, the model exhibits positive speed

stability in hovering flight and throughout the speed range.

It should also be observed that these results apply in the unstalled

regime of flight. Examination of the data of figures 14 to 19 indicates

that, in general, beyond the stall the configuration would exhibit more

attitude stability but also would exhibit speed instability. The full

significance of data such as that presented in figure 51 cannot be

assessed without a complete dynamic analysis in which at least three

degrees of freedom are considered.

L

7
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Climbing and Descending Flight

The effects of angle of climb and descent on the performance and

trim parameters are presented in figures 52 to 55. In general, these

data might also be used to gain some insight into the effects of accel-

erating or decelerating flight. Climb corresponds to accelerating flight

and descent corresponds to decelerating flight. A descent angle of l0 °

(W = -10 °) would correspond to a deceleration of 0.17g. Although the

specific values of power, velocity, and moment would not apply exactly 3

the variations would be in the same direction, thus a decrease in pitching

moment with increase in climb angle would also indicate a decrease in

moment with acceleration.
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The wing stall shows up on the curves (figs. 52 through 55) as a

break in the smooth variation of the parameters with flight-path angle.

In general, out of the region of ground effect, the stall occurs at a

flight-path angle of about -7 ° or -8 ° or more (deceleration of O.12g).

The data also indicate in general that very little additional power is

required to fly above the stall; however, relatively large increases in

angle of attack are involved. There is no way of determining from the

data obtained whether the configuration would be controllable above the

stall, but general experience would indicate that not only would more

adequate power be needed to fly in this regime, but also very powerful

roll and yaw controls would have to be provided.

Effect of Thrust-Line Incidence and Direction

of Inboard Propeller Rotation

The wing was set at a noseup incidence of 5° with respect to the

propeller thrust line. In order to determine the effect that incidence

might have on the stall characteristics, the model could also be fitted

with alternate nacelle mounting blocks that placed the thrust line paral-

lel to the wing chord plane. A few tests were made with this wing

setting with 5f,S/Sf,R = 30/20.7. The results shown in figures 29 to 31

indicate only a very slight delay in the stall with the thrust line par-

allel to the wing chord plane (in = 0).

The direction of propeller rotation used in most tests, shown in

figure 2, resulted in a tendency for the slipstream from both propellers

on each side to increase the angle of attack over that part of the wing

between the nacelles. It was thought that this increase in local angle

of attack might contribute to the stall, and a few tests were made to

determine the effects of reversing the direction of rotation of the

inboard propellers and thus of decreasing the local angle of attack.

These results are also shown in figures 29 to 31 and show very small
effects.

Effect of Tail Fan

The variation of the pressure required to drive the tail-fan motor

and of the increment in pitching-moment coefficient due to the tail fan

(based on the propeller slipstream dynamic pressure of 5.0 lb/sq ft)

with tail-fan rotational speed under static conditions is shown in fig-
ure 8. The moment coefficient of 0.06 at the maximum for rotational

speed investigated would correspond to a downward tail-fan thrust of

about 80 pounds on the airplane.
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The results at forward speed (figs. 32 to 34) indicate that the tail

fan provides an increment of pitching moment but does not change the basic

stability of the configuration. Also the tail normal-force and pitching-

moment data indicate that the slipstream from the tail fan alters the

flow field in the region of the horizontal tail but produces only an

incremental change in the normal force and moment which does not change

with angle of attack.

Effect of Slat

As pointed out previously, wing stall occurs at moderate angles of

descent in the intermediate range of transition speeds. Previous experi-

ence (ref. 8) indicated that the stall could be delayed to much steeper

descent conditions with deflected-slipstream configurations by adding a

leading-edge slat. Another means whereby it was thought that similar

results might be obtained was by increasing the flap chord to increase

the wing area. The results of tests of such devices are presented in

figures 36 to 38 and in figure 55. Increasing the flap chord is shown

in figure 37 to be much less effective than adding the slat. The slat

extended the unstalled region of flight to flight-path angles of about

-20 ° (fig. 55). This delay in the stall would increase the permissible

rate of descent to 850 feet per minute (as compared with 300 ft/min for

the slat-off condition) for the 25-knot speed (fig. 55) corresponding

to the 30/20.7 flap-deflection configuration with which the slat was

investigated.

L

7
3
5

CONCLUSIONS

The wind-tunnel investigation of the longitudinal stability, control_

and performance characteristics of a i/5-scale model of a deflected

slipstream VTOL airplane indicate the following conclusions:

i. Steady level flight out of the region of ground effect can be

accomplished without wing stall being encountered 9 however, decelerating

or descending flight will have to be limited to decelerations of O.12g or

less or descent angles of 7° to 8° or less if stall is to b@ avoided.

2. The addition of a leading-edge slat increased the limiting

descent angle to about 20 ° (deceleration of about 0.34g).
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L

7

3

5

3. A relatively large diving moment is present in the hovering

condition out of the ground-effect region. To alleviate this diving

moment may require that the center of gravity be moved rearward from

the point used in this analysis, that the propeller thrust axis be

lowered, that the tail-fan thrust be increased, or that a combination

of these changes be provided.

4. In hovering, the presence of the ground deflected the slipstream

on to the horizontal +_i_, so +ha+_ _ a large ........_a_in the diving moment

occurred, unless the tail was set at an incidence (nosedown) of

about -57 ° .

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., January 6, 1960.
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